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e I
_WELL-POSED] CAUCHY PROBLEMS

Heinz—Otto{Kreiss

- |
1. INTRODUCTION ' i ' .

In this paper we shall conbider Systeﬁ%of partial differential
equationsg of the type |
4 . . ) m ) .
dufot = P(,3fox)u = 3 Pt,0/0z)u ‘ (1.1)
L . j=0 .
and shall investigate the guestion as to when the Cauchy problem
is well-posed | in an interval ‘;i):stgf!',_' T>0, . Here lz=(z,...,2,)|
denote points in the real s-dimensional space R andwf{ﬂd%ﬁ{n-?dﬁﬂxy
"are functlon vectors in the complex n-dimensional space S and
. |

Py, ofox)u = A;(l-') Mufxm . ., 39:,"',-.
R »E% fom (1.2)

IJ-, v=(l’1,...ﬂ,), |‘Pi .-..-Zy‘,

are homogeneous differential opérators of’ order J whose coeffi-
cients are continuous square ma#rices which depend on t. (y! de4oLw4
notes the transpose of the vector y.)
|

Furthermore, in the last séction of this paper we shall apply
the results obtalned to the investigation of first order systems
whose ccefficlents depend on X élsd. By so dolng we are able
to obtain "a priori" inequaliti%s which provide a means of
generalizing the results of Ler?y [5] and Petrovskii [7].

#-‘Numbers in margin indicate pagination in original foreign\

text.




This paper depends egsentl

author [ﬂ], and we assume famil

2,  DEFINITION OF APPROPRIATEN

ally upon a previous paper of the
iarity with it. -~

ESS

7#}of the
(1.1) has already been studied

In that paper =;he defines well- posedness

Hadamard (3] essentially as fol
and a natural number p such tha

t for all t

Cauchy probiem for the system

1ntensive1y by Petrovskii [8].

7 din the sense of

there exists a constant C
: -

lows:
where %—e—ﬁ_f;l_

1’ 72 o

0st,S65T) the estimate

mip 1u(z,t,.)1 50 z 3 sup|dulz,ty)[ax . .. 0|

Ju Iv|j=j zaR

where jM*;ZﬁMﬂ holds for the so
functlons are admissible as bou

At an arbitrary time ti ‘which. are’differentiable sufficiently

often, are bounded together wit

(2.1)

lutions of (1.1} Here zll

ndary values for the system (1.1)

- 'ﬂ. o —— . =

h their derivatives, and for which

a solution of the Cauchy problem exists. If we let z
o ' S : ¢

P(t,fw) = z P,(z u.,) P,(t,iw) ¥ A,(t)(w,)'l (G, !

‘ j=0 : [v1=F ’ (2.2)

then Petrovskil proves the foll

The Cauchy problem (1.1) w
“well-posed ifirthe sense of Had
congtants Ci

Rexy{w) < C, logll +Jal| +Cy)

holds for the eigenvalues xw)
subsequently that one can set C

such that the inequality

owing criterion: ' t

ith congtant coefficients is
amard if and only if there are

)
t
|

(2. 3)

of  Plio) . (L Garding [2] prove&
Q). ;

I}

"~
|_I
=t
o



In general this criterion no longer holds when the

- In fact. one
can present systems (1.1) which| are notJ“EEkapsgd /1n the -
sense of Hadamard, é?gﬁ”Eﬁaﬁéﬁ“F§T§7_HEids'?Ef'é§efy 36(&1}.,ﬁr
Such+a system i\ - [
= A l
ou 11\, . du '
— = i T Y =
7= V0o ) U0y, vw

(< )| (2.1

=

If we now introduce

Obviously (2.3) is satisfied foL every .t.
v = Uhlu as a new variable we optain

,.:‘;au 11\ .‘"_iaU -__ (1 1)@_(0 _1)
3552(01)5?:’? ERERUR VARG o"-’“

(2.“5‘9

Since U is an orthogenal matrix, the Cauchy problem (2.4) is
t R,
well-posed” ") precisely when (2.5) is “well-posed, : But (2.5) is a

system with constant coefficients~

eriterion (2.3).
Pliw) = ((1’ :)im —-((1’ "(1,)' ,}

1

Therefore we can apply the-
Now

we havei
[
(w) = dw [= (1+io) ]

and for the eigenvalues

|

The inequality (2.3) is
Cauchy problem&(Ziﬂx is
ing considerétionsugold
by x).

therefore not satisfied and thus the
not ~ well-posed, "} (Note.ithat correspond-
if one %eplaces the variable t in U (t)

Hence 1n order fo obtalin an algebralc criterion which

also holds — under suitable coﬁtinuity assumptions — for

coefficients which depend on t,{it 1s necessary to alter the

definition of ‘well-posedness. .~



“We Tow d&fine what it is that we wlsh to understand-by-ag. 7

well=posed _J Cauchy .problem in this paper, Let L, be the Hilbert
space of all n-dimensional vector functions ulx), vi{x), ... in
R whose absolube—sguare—is—integrable-and-whose—_norm and scalar

product are defined as usual by

B i-l

) = Iu*vdx fy_u,v,dx () = 1 (2.6)

. . “ ‘
Furthermore we denote bylmh=gﬁthe class of all vector
functions f(x) whose Fourier transforms
= . -, o v ; . I : : -

Plw) = (2x) “;J‘ e f{x) d?, o= (a_ll,---,m,)i ;Q%;I:l (2.7)

s : S . o N
U . ' s , '
exist, which are plecewise continuous, and which vanish outslde
of a compact set eRW(independent of ). Here R' denotes the
real s-dimensional space of the| variables ‘w={w,...w,). For the
.Cauchy problem (1.1) we admit as initial values at arbltrary
time tle(O,T) all functions f(x) which 1lie in:M|. If one
applies the Fourier transform to the sysfem (1.1), then by

virtue of (2.7) one obtains

: ’ ', w(w,t) = .(2,,)-315 J.‘e_‘w:u(x,t)d:;: " '
L i |
yo.0fdt = Phivyplon,  yoh) = ¢e) (2.8

If one solves these systems of ordinary differential
equations, then for each initial value distribg%ionﬁ#@iéﬁﬂ

one obtains a solution

wt) = (@ [ piod) do. t2h.
?‘ )‘_(:ﬂ ﬁ!e ww%ﬂdw, .t;&? (2.9)
of the Cauchy problem (1.1) thch belongs to fthe set'ﬁﬁl.for
.each.flxed £t and which is contilnuous with respect to & ‘

and infinitely differentlable With respect to x. We now
define:



DEFINITION 1. The Cauchy problem is well-posed /if there is

a constant C such that for all b ’l',' t,_where 05436,sT) ', ‘and for
all solutions‘ﬁgggjﬁthe inequality '

etz 2l S Clieel, )i (2.10)
holds.

The inquglity (2.10) is the decisive req%;rement for:;ﬂéni

poSedness. ¢ Indeed sinceiﬂﬂ 1s| dense in L, one can admit all

functions of L2 as initial values if one infroduces generalized
solutions in the usual manner. | For these solutions (2.10) then

holds also. ;/112

3. CONDITIONS FOR THE SOLUTIONS OF THE DIFFERENTIAL EQUATIONS.
(2.8).

=z PR S, Y P

We shall now state necessary and sufficient conditions which '
the solutions of the differential equations (2.8) must satisfy i?

b
i
A l

order for the Cauchy problem to|be well-posed  » We prove

THEOREM 1. The Cauchy problem (1.1) is well-posed . i1f and '

only if there is a constant D>0lsuch that for all w, for all tl,igz
with 0542687 , and for all solutions of (2.8) the inequality
+ o+
Tv(@,t5)| < Diplw,ty)i] (3.1)

holds. !

PROOF. If (3.1) holds then it obviously follows from
Parseval's equation that the Cagchy problem 1s”well-posed.” Thaé
“the “condition (3.1) is also necesgary is proved as follows..

. Assume that (3.1) does not hold Then there exist sequences




@ b ) 2nd plo,h)| with 08k, <7 such that

pout)] 2 vyt =12 (3.2)

i r
Since the solutions of the diffetential equationg (2.8) depend
continuocusly on w and on the initial valueé%there exlsts a 3¢>@
such that for all w with je—w|24] the following inequality holds.

@b 2 lve,0) provided that ploh) = vost) |  (3.3)

If we now let

o A for|jle—w,|Sd) -
- wmmh)m{”@;*ﬂ‘—*ﬂ

| for|lo—w)>8 o

w] |
be Initial values for a solution 'wl(z,t) of the form (2.9) for the
Cauchy problem at time =t , thén

]

Tt Z Bl -

follows from (3.3) and Parseval's equation. Thus (2.10) is not
satisfied, and the Cauchy proble@ is therefore not ~well-posed, 4

LN

!

4, SYSTEMS (1.1) WITH CONSTANT éOEFFICIENTS
t

. 1 ‘ :
We now consider systems (l.%) with constant ‘¢oefficients and’

we shall state a necessary and sufficient algebraic criterion for

the WEID¢9§éﬁ@$§7 7 of the Cauchj problem. First note that one can

wrlte the solutiogé of the syste%s of ordinary differential

equations (2.8) in the form ;
ot = Dy | S

Hence from Theorem 1 follows immediately =

i em e



THEOREM 2. The Cauchy problem (1.1) with constant

Goefficients is well-posed J1f and only if there eiists &
constant D>0 such that for all i

s

lePta £ D, 0s<igT.

(]A] is the ELclidean norm of the matrix A, i.e.,[Al=sup|aAx|/[x].)

If the ihéquality (4.2) ho?ds, we can write it in a somewhat
different form. If we let (logD)/T = o,

it then follows that

[eP0T| g ga7 |

Hence for{0§t<mﬂweﬁhave 1
!IeP(fm)fI § Deat ,\ ) .
~and for the family .% pof matrices _fPﬁw)—&I[ we have

.|e<"<“"""’"| 5 D, 0§£<°° ]

(4.3)
Therefore, we can apply the main theorem of [6] to the family IFhy,

This theorem provides necessaryFand sufficient criteria-which the
family igﬁ‘ must satisfy in order that (4.3) shall hold. We obtain
THEOREM 3. The foliowing étatements are equivalent:

{
'

well-posed, ¢ '

1) The Cauchy problem (1.1) Wwith constant coefficlents is

—232 and o , and to each

2) There exist real constants 031,
matrix P{iw) there corresponds a matrix S = S({w) satisfying

max((S],18-) S O (4. 4)
30 that_“



B-= S(P(iw) - ad)S*

. g SP@w)S1—al =

--------------------------

! . _ _ 0 .......... 0 x}..—a_
|
:
and the inequalitles f
Rex;—a 5 Rew,~a 50, jxk, (4'5)
and ‘ _
byl & Coa([Res, —af)) (4.6)
hold.

3) There exist real consténts Cu and a, and corresponding

.....

8
©
M
5
'E
=
A
P
et
=3
B
o,
|_;.
den !
<
R
A
m
!A
&
it
i
|
™~
el
[
I~

s0. that
H(o)(Pw)—al)+(PHio)—al)H(w) £ 0. (4.8)

Furthermore it should be néted that according to section
4 of [4] one ecan construet the ﬁatrices H(w) with the help of the

matrices S(w). In fact one canlassume H in the form

¢
i

= | 3%DS o (4.9)
{
1

where D is a suitable positive ?efinite diagenal matrix

independent of w, {
|
We now wish to formulate the third statement of the last

‘theorem in another way. For thlS purpose we introduce

I
i

¥ Denotes the adjoint matriX GF AL

'8



. DEFINITION 2. The differential operator ?@ﬁﬂ\js semi-
‘bounded with respect to a norm ku,Hu) if

' -
J

1) H is a linear bounded p051t1ve definite symmetric
operator in L2 which 1is def1ned|everywhere and
|

2) There exists a constant a such that for all julz)e T
er. (2.7)0: |
(P(B,’ax)u,ﬂu)+(u HP(alax)u} =2 Re(P(a,faz)u Hu)
£ 2a(u,Hu) _
Note that wa’ﬁﬁﬁﬁ_ﬁhhﬂu)j is equivalent to the L -norm. :

We now prove :

|
THEOREM 3. The Cauchy problem (1.1) with constant coefficients
is_fwen-'ﬁbﬁd”'%lf and only if P(a/ax)\ is semi-bounded with respect
7£0 a norm’ (u, Hw).

PROOF. Let the Cauchy problem be. well-posed. - Thén it

follows from the proof of the maln theorem of [4] (cf ., Sectloq_§ﬁ
that one can assume that the matrlces S(w) — and therefore by
(4.9) the matrices H(w) of the ﬁrevious theorem — are piecewise
continucus functions of w. Ind?ed one can write S{w) in the -~
form (S(w) - Sl(w) U (0w} where U {w) is any unitary matrix which’
transforms P(iw) into triangular form {(Schur's normal form),

and the coefficients of Sl(w) afe fractional rational functions

of the coefficients of Ulw)Pliw)U*w). Hence by means of /115

itHu = f e Hwlp(w) do, u = (2m)-o f ez p(w) dw;

(4.10)

we can define a'linear bounded énd positive definite symmetric
operator H in L2 for which the inequality

: ' o o
Citulf § (. Hu) = [y¥(w)H(@)plo) do 5 C,ljulp |
b F oo
holds by virtue of"(477) and Parseval's equation. From the
inequality (4.8) 1t then follow? that for all*ﬁWIEQQA

| |

Yg



(P{afax)u Hu) + (u, HP(3[oz)u)

: (4.11)
= fv*(Pt(zw]H{w)+H(w)P(;w))'pdw - o

§ 2afy_;*H(w)zp’ deo -
N 4 '

= 2a(u,Hu) .
|

E
anvérsely if-P@ﬁﬁ)lis seml-bounded with respect to a

‘norm (u,- Hu) then

a(u Hu)/at (Qufet, Hu) + (1, Houjot)

(P (9/2x)u, Hu) +(u, HP(@ox)u)

2a(u,Hu). - (4.12)

f['

A All

holds for all solutions of thérbauchy'problém of the form (2.9)
which belong to the set &Rb for%each fixed t. Since the norm

gu, Hu) is equivalent to the Lg—norm\the 1nequa11ty (2.10) follows
from (4.12). Thus the Cauchy. problem is well-posed. o

J
1

5. SYSTEMS (1.1) WITH COEFFICIENTS WHICH DEPEND) ON t.
] .

We shall now show that the}two criteria of the last
theorem hold in the main for co&fficients which depend) on t.
We prove - ? '

‘ i
_ E .

THEOREM 4. Assume that the second or third statement of

theorem 3 holds for all fixed tE(O?W where the constants C3

and o are 1ndqpendent of £t.” Then the Cauchy;problem

and o or Cll

(1.1) 18 well-posed ?if the matrlces S(t,w) or H(t,w) are contin-

uously differentiable with respect to t for each fixed w, and

there is a constant K independent of t and w so that [&S/at<K] or
BH[asKI L
- | i

10



-aPROOF If the second statement of Theorem 3 holds for
constants 03 S0 and if S{t,w) 1s contlnuously differentiable, then
it follows from section 4 of [3], applied to the famlly 5’ /116
of matrices P(t,iw) —ol,w real and ¢e(0,7)| that there is a

constant p051t1ve deflnlte dlagpnal matrix D such that the matrices
|

H =] 5%DS

have the properties assumed in the theorem. Hencé&we only need

to prove the theorem for the caee in which there.are such matrices
H(t,@D If we now consider theﬁdrdinary differential equations
(2.8) it follows from (4.7) and (4.8) that

drp"‘H w/df YMHP Y P*Hyp+ p*(0H, [at)w

© S (@e+CKwrHy. | (5.1)

Thus the inequality (3.1) is Satisfied, and therefore by
Theorem 1, the Cauchy problem is well-posed. '}

is

6. EXAMPLES OF WELL-POSED ¢ CAUCHY PROBLEMS

s
1 ) [
We shall now mention some examples of, well-posed iCauchy
1  well-posed
problems.

' i

1) Parabolic Systems (cfﬁkPetrovskii [8]).
3
Ifm*~= O(mod 2) and if there is a constant, é>0}such that for
a2ll w, £t the 1nequality

Rex{w) & g—zaiw;ma-lj (6.1)

holds for the eigenvalues wfw) of P(t, iw), then the Cauchy
problem (1.1) #s well-posed. ' Indeed we can construct matrices
H{t,w) ih the following way: if%%efmf“]is any fixed vglue of "t,
then the Canchy problem for the}system

11



’ - L T i . .
au;az P(c,,, a/aa:)u =9 (‘ p3 82}6.1:,") u + Pto, 0f0z)u (6.2)

. weal

is well-posed, /¢ There 1s in fact for ° le#W a unitary transformatlon

U(w), such that the ordering conditlon (4.5) is satisfied and
|

107(0) Bty i) U*(w) = U(w) Plto, i) U*(w) +8jol"]

P fmdjel™ bgeeeeenibyy,
o 0 a4 8iwf™ bag . Ban

----------------------------

(6.3) /317

According to {6.1) the 1lneguality

Rofty+8jul™) & ~folol™ |

|

hdlds for sufficiently large T&fiﬁhSince the ﬁ@”ﬂm4ﬁ+ln are
bounded it follows that the inequalities (4.6) are also satisfied
for a suitable value o. Therefbre, by Theorem 3 the Cauchy
problem for (6.2) is weilposed \ and there are constants Cu and
a and matrices H(to,m) which satlsfy the inegqualities (4.7) so that

| Eﬂ(‘o» m)ﬁ(éo; i)+ Pty i) H ty )
= H(t,,w)P{,, i) + PH{to, i) H (fg, ) +26[m|"‘H(to, )

6.4
“ = 2ocH (2, “-’) ( )

If we now consider%P@Ew)hn a suitable neighborhood of tO then it
follows for jw[2} -that:

iH(to,m)P(t o)+ P*(t, %w)H(to,m) ‘
< H(ty, )Py, tw)+ P*{L,, 1w)H {tgr0) +
- + 2|0 Hity, @)(Plty, iw) — P, io))flo|m|] |
¥ = H(ty, )Pty i) + P*(ty, iw)H (ty, ) + 8feo|™H (to, ) +
-+ 2lafn([H e @Y Pl ) = Pl ol ~ P

1z



Slnce the coefficients of P(t, 1w) are continuous W1th respect to
t, 1t follows that thereé is a nﬁlghborhood of t independent of
w such that !

ﬂH(@,@(P(so,im)—P(a,io},))nwtjn{ — PH(tp0) S 0|

For this neighborhood there is therefore by (6.4) for all |uw]

a constant o, such that !

:I-’f(to,w)'P(tl,iw) + P*(t,iw)Hkto, w) £ 2x'Hlty, w)—dlw|™H({ty, w) ( (6.5)

This shows that the Cauchy problem is locally properly posed. ?
It then follows in the usual fashion that the Cauchy problem
is also globally properly posed [gince each finite t-interval

(0, T) can be covered by a finite number of neighborhoods of
the above kind by means of the ﬁeine—Borel theorem.

Furthermore note that one éan also - generalize the estimate
(6.5) to the case in which the coeff1c1ents of the differential
operatorLP depend on x also. From this faet one can then
derive "a priori estimates" wh;ch lead to existence theorems.
(Regarding this matter cf.ﬁGan%ng [11 and Mizohata [6]).

| o

2) Homogeneous systems of 'the form Owjot=P,(0/ox)u with
constant coefflicients for whlch!the elgenvalues of ”an]are pure
imaginaries. We prove the I

THEOREM 5. Given a system%'

lv[nm ] (6. 6)

”wiﬁh_conspant_coeffiéients. Then the following statements hold:
i‘

Bufot = P (3fex)u, = S Agmfaen. . dmp |

(1) If m = 1{mod 2) and if the Cauchy problem is. “well-posed.
theh the éigenvalies %) of P, lie) aré aséessarily pure 1magin—

-aries,

13



h (iiywif the ”Awn are pure imaginaries then the Céuch& pfoblem

18 well-posed JAFf and only if there is a constant Cyy and to each

w there corresponds a matrix S{(w) with

max(|S},18-1)) § Ca | | (6.7)
S0 that
Co T B, 0 ...l 0 l
D Se)Palio)s ey = [ ¢ P00 (6.8)
0..... .70 ;’C“

_ PROOF. For systems of the?form (6.6) we have
Pyiw) = lalPalol);] 1 ¢ . %w) = loxyo]lo) | (6.9)

-Moreover 1f m = 1{mod 2) then we also have

Pl —iw) = =P, (lw);

i.e.,ﬁ x(—w) = —:f,(w).; - (6.10)

Thus for m = 1l(mod 2) the inequ%lity (4.5) 1s'satisfied pre-
cisely when Rexfw)=0). This préves the first statement of the
theorem. The second 1s proved ds follows. By Theorem 3 the
Cauchy prcblem is obviouslyj@fﬂ?ﬁééﬁiij{for the differential
equation (6.6) if (6.7) and (6.%) hold. Conversely if the
Cauchy problem.isii@jji@@@&"“}tﬁen by Theorem 3. there are
matrices ®(w) which satisfy (4.4) so that for all w

S)PaliwliHe) = omS@PatofledNe) |

"1’ b’li ------- b'lﬂ
= I lm 0 %3'_ b'g b'zn ¥
........ srreanees (6.11)

R [+ SR | |
™16l S Cglar| . | L

14



If we now hold w/olfixed and consider the sequence je|=L2,...)
then we obtain from (6.11) 1im ¥y=0. Since the B} aré uniformly
ﬁhjmnded\we can choose a subsequence loly suech that 1im S(@)= Swm

exists. TFor the matrices S(w) thus constructedcfé‘T) and (6.8) /119

hold. This proves the second statement of the theoren.
|
As matrices H we can then bhoose

H = H(w) j=_S"(w)S(w)'] (6.12)
Then in fact :
H(w)P,(io) + P *(o)H(w) | - . J
. = SH@)(S(D)P,S-Yw) + 8% Hw)P, iw)S*(@))S(w) = 0. | (6.13)

holds. !

Moreover, the matrices H necessarlly have the form (6. 12)
Indeed we have (cf. also O. Tausky [al)
|
LEMMA 1 Corresponding to é sguare matrix A of order n

there exlsts a posltive definité hermitian matrix H such that * @ = *°

HA+A¥H = 0 if and only if the eigenvalues of A are pure imaginaries

|
and A has a complete system of elgenvectors. For all such

matrices H one then has H = S*S!where S is any matrix for which &

sAS-1 has diagonal form, 1.e. S = T~1 where the column vectors

of T consist of n linearly indeg@ndent elgenvectors of A.
|

1
i

PROOF. Let H be any positive definite matrix such that

HA+A*H =90, 1 C(6.14)
-Since there is-clearly a non-singular matrix Tl-such~that--«~'
H= QH*‘Tfhut follows from (6.14) that

T,-IAT,+T,*AT1*-1—0 b (6.15)

15



Thus Tl_lATl is antisymmetric. |Hence Tl—lATl has purely
imaginary eigenvalues and n linéarly -independent eigenvectors. - The -
same 1s therefore also true of A. From (6.15) it then follows

furthermore that there exists a unltary matrix U such that
UT,2ATU* = T2AT, T = T,U%,|

has diagonal form. Hence T is ?he desired matrix which reduces

A to diagonal form, and one obtains -
i

H=T7T*"T"= 'T*'IT_I:J

Conversely if there is a non-singular matrix T such that

,T]_

the equation (6.14) where H= 7“41'41n case the eigenvalues of A are

AT hgas diaponal form\@hen in'accordance with (6.13) we obtain /120

pure imaginarlies. However, this proves the theorem.

i

D

If in accordance with ﬁﬂeo%em 3 we now introduce the operator
H defined by (4.10) we obtain |

ot

THEQOREM 5. If the elgenvalues of Puliv)are pure imaginarlesh

then the Cauchy problem for theidifferential egquation (6.6) is

“well-posed . if and only if there exists a norm (u, Hu) such that
for all u@)eﬁﬂl

~ (P(afexyn Hu)+(u,HP (3foz)u) = 0,

or otherwise stated, if and only if the operatorg&P@ﬁx)with domain

of definition mﬂ is symmetrlc w1th tespect. to the horm {u, Huo

|

16



7. REPRESENTATION OF THE OPERATOR H AS THE QUOTIENT OF
]
v': . DIFFERENTTAL:OBPERATORS .. ..

1

We shall”now‘sﬁate‘conditiﬁﬁ%“éﬁoﬁ“fﬁat"fhe'bperator H of

the last theorem can be represehted as a quotlent of differen-
tial operators. This representation is important if one wishes
to consider differential equations whose coefficients

also depend on, x. In.accordance with Petrovskii [8, p. 561 we

e -

introduce ‘the following terminology. 5 e

. DEFINITION 2. Given a matrix AB)=(a,p), 0<i,jSnfwhose \ g

elements on_an opehn set %ﬁare continuous. functions of a real \
parameter B=F-...f) . We say that A(B) has simple structure on
L RAF for all BeR- " A(B) has the following;pfoﬁg;ties \

1) A hdsroilihearly-indepéndent eigenvéotors j

2) The multiplicity of the roots of the characteristic
equation {f(?t)=]fdetiA —Ixf=0|. 18 1ndependent of‘ B, i.e. .f(%)[ can be
written in the form - ﬁ

b
|

H(g,(x)) =TI +9. x"“+ A T = % (7.1).
where the roots #mlof Uiﬂjare precisely all the roots of fW) @
of multiplieity v. j
[

I£. in addition one assumes that the a.j aré r-times contin-

uously differentliable with respect to B then the same also follows
for the i%é . According to Petrovskll [8, p. 57] the tx, are |
indeed r-times continuously dlfferentiable since they are
simple roots ‘ofy ;&ﬂkﬁ&(zq . *

!

. - &} - - - I
We now prove the decisive‘l
|

17 -
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TEEMMA 2. T Let A(f)= Lﬁmn 05h3<n] be a matrix whose elements

are .continuous Tunctions. of a. real parameter B on an open set! %L

Let A have simple structure on %]and let

Rex = 0| (7.2) /121

hold for the seigenvalues x}'of A for all ‘ﬁegﬂ- Then for every

ﬁmegﬂthere is ans>4)bnd there is defined on|%| a positive semi-
definite hermitian matrix H(g) such that for all B with!|f—F% <s|
the matrix H(B) is Ep51t1ve definlte and

HA + A¥H = 0

Here the elements of B are 1ntegral ratlonal functlons in the

|‘ a’;j: a-:,' ]and gvps . i
| o s e
i

_ ‘ i S ,
PROOF. We consider any point ﬂm53ﬂ If the multiplicity
of an elgenvaluex}equals N, then A :d}and the assertion of the

lemma is obviously correct. Hence we can assume that the multi-
plicity of all eigenvalues 13 less than n. We now consider all

elgenvalues = A} with multlpllcltynwnﬁand we shall determine the
corfespondlng eigenvectors. The componentsig& of these eigen-

vectors are determined by the 1%near equations

S - 1 - - - - - e = -

Ly = @@ tageet o+ (@ — %, )20+ .. +a5,T, = 0,
i ' : k=1,...,n

By hypothesis this system of equations has rank n - v, i.e.y

(7.3)

corresponding to each eigenvalue /WJ there are exactiy v linearly
independent eigenvectors. Hence we can choose constants

s+ -k 1=1,2,,. ., such that for 8= ﬁW|the eigenvectors assigned
to any one of the e;genvalues?xm

l

o - o N iw | B _‘:; 7‘ e e
E‘R‘JL‘L bi1x1+"'+bmxn = 0, l= 1:23-—-77‘"7, (7-“)
L:l : . .

.y TTTIT O [ it -
Y e e e B e B T T

are determined by the equatlons

18



_The subdeterminants det {b [ of order n-v_ are in fact
integral rational functions in the Alk’ which certainly dc not all
vanish identically. Hence they,vanlsh simultaneously only for
special values of the Alk' Then we obtaln the elgenvectors in the.
following way. Corresponding to the subdeterminant?ﬁm%i@y@ﬂh

31<k T<nfyj of order n-v we can find v elgenvectors.
_.l

» h W = (hlll A 'rhln ’h 0 0):
Ty \hf)=(hnﬂ.”hmﬁJLh,0”.”0L

P R e

FILUTTITUIS L L. A

with the help of Cramer's rule.' Here the hij are subdeterminants
det Ib | of order n-v which have an appropriate sign. These
elgenvectors are linearly 1ndependent precisely. when h(1)5¥\0.
(1) _

Correspondingly we can construc? for each subdeterminant h

det |b | of order n-v, v elgenvectors which are linearly

1ndependent exactly when h( 1) #10 Since not alil h(l) vanlsh /122

for every elgenvaluevmﬂ]we can,{Just as above, fix constants
u;; such that foriﬁgﬁwwthe'v eigenvectors SRR

xm) = ZF‘uh“! j= 1:2,.7.7.,1','}_

[
e e — - rim— -

" T ' - N,
are llnearly 1ndependent for all:#ar——Hence we can réprésent

in the form ¢Wﬁf e L o

.f .m (le xwl)’ . f:rﬂ(xv.u ) H ‘ .7 = 1""’ ‘ ""J (7 . 5)

the llnearly 1ndependent elgenvectors Which _for ﬁ ﬁl crrespond to
ratlional functions in the ay3j and the %;\. Furthermore this
representation of the eigenvectdrs holds for allfﬁgﬁﬂfor which

the vectors (7.5) are linearly i%dependent.

With the help of these elgenvectors we now form the matrix

B T ol NI s}

[

T, = (i) - B fla) - Flma) o) '
) - Sl ilial - ) 3 (7.6)
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.Here the: 4, Lrange over all elgenvalues of multlpllclty v, l1.€.
all roots of the factory&x)of (W 1). For

- e e e A o e ¢ A M e oL 4 e s ety v =

t

7= (3 zﬁ,(x,,p)f}—.gw) = (), 057 énj
o - -,,,,'“_ .t [P - L e e e e .

i
—_——

it then follows that the Chg arF integral rational functions in
the aij’ Eij and the. x,| which ?re furthermore1symmetric
(Note that V —7 be (7 2))» I REE

Hence it follows from the fundamental theorem for symmetrlc

functions with respect to the x|

Tunctions $hat the=cré can'be written as 1integral rational
functionsg in the aij’ Eij and the coefficilents qv“ of the factor
ibgiﬂof‘(?.2); With the help off all eigenvectors of A-we now

form the matrix

(7.7)

which is non-singular for |f= ﬁfﬂf\ Here o is the highest
multiplicity of the eigenvalues’ which occurs. Then for 18=p)

as well as for all‘ﬁegﬁyfor Whl%h T is non-singular
| .

RSP IR

o xIO.:,')...O
PALT = 0 2 0...0 ' .(7 8)
0...... 0 x,
. R A T
and the elements of ‘
. |
TT* = 3 T.1:* '
2& ' (7.9) /123
) .
|
are integral rational functions‘in the a, i5° Elj and i%J. The
same is then true zlso for the ?oeff101ents of the hermitian p
matrix i '
- R S - -
H = det|TT*|(TT*)-1 = (det|T|)FT*-1T-1 J (7.10)

i
1
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which is positive semi-definite;for all #e¥, and positive
definite at least in one neighb%rhood of?ﬁ=ﬁ?j. It should be
noted that for .f= ﬁ@\, Hhisunonésingulanmand_that-the elements of
H are continuous functions of B} For all ﬁeiﬁ for which H is

non-gingular we then obtain i

HA+ A = @Y T|) T NI4T + T*4*T+0)T = 0. | (7.11)

with the aid of (7.2) and (7.8)T However, this proves the lemma.

We next prove an important Special case.

0

LEMMA 2'. TIn addition to the assumptions of Lemma 2 we

gssume that ofscan split up B iﬁto”ﬁ}? (Bu- .8 | and =B - B0
so that one can write RN=%N(5)] asJa direct product product (A x|

9hﬂ&ﬂl Moreover let the coefficients of the matrix A and the [ 9.,

be analytie funections of BII for each fixed value B1. Then there

is for each 8% an. s>Olsuch that for all B with{ifi— ﬁﬂm<€]

and all fpe R {B)| there exists a positive definite matrix H

of the above kind. Here Ris an|arbitrary compact subset of Ru(Baoll,
PROOF. Let ﬂﬁ”é%{gf] be fixed in advance. By Lemma 2 there

A

iz for each point. ﬁ”*;ﬂmxﬂf’ Sﬂﬁ)bn el>O so that for all g with

Hpr—F9 <e)| and [Bir—pAu <e;| such é matrix Hy exists.(7.11) holds

for the matrix H, not only when| [f—A" <, Bu—Bu® <&l but also for
all e} with . If—A® <el. This i1s the case singe for each fixed
value BI the elements of HiA + ﬁ*Hi are analytic functions of 8

% (1)

which.vanish in a neighborhood of BII

Hence they vanish
identically. Then 1if mCﬁhﬂﬁnH is a compact seft one can cover it
wlth a finite number of such nelghborhoods ﬁ&1 m{%§sJ and we oOb-

tain the desired matrix in the form H =‘2Hi'
:

Now we can prove the following theorem.
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--.-Theorem 6. Given a system! of differential equations”
x

“eufot = v (ojax)u 1 (7.12)
1

with constantlbééffiéiéﬁﬁsw_ Suppose Fhat For the eigenvalues

of iPpliv)l, Rex(w)=0, TIf P (iw) has simple structure on the set /124
lw]= 1 then there ex1sts a dlfferentlal operatorM}daﬂbf an order

2N such that "

i

(R e—

o 3 1esuls e+ i) S (uQfRe)) 3 & T e luit) | (7.13)
(PGEfoau, 0 (3]2x) u) + (2, Q( é/;'x B/Bx ) 5 < 3(u,é(a/éx)i.-f)'| (7.14)

for all‘?ueﬁm. Here the Gi are’constants with 0<51=5L_

;
|
L

which are independent of u.

o g e

PROOF. P(iw) has simple s%ructure on every set ﬂﬁ%ﬁﬂéﬁé]
ﬂ0<a1<1<“4 . This follows direcﬁly from the equation

RS

P,(iw) = jo["Paioflo]) .| (7.15)

Therefore, the giﬂ are 1ntegral[ratlonal functions of w. For
the factors 'g(«)| are the common d1v1sor of | fix) land d7 (x)/dx] |

Hence the representation (7.1) holds in the ring of polynomials
[Ploy," .. ,onx)over the field of complex numbers. If we therefore
apply Lemma 2' to such a set with1m1—wkhen there exists for |w|=

a positive deflnite hermetian matrlx H (m) whose elements are

integral rational functions in Qhe w such that '
[

!F__zw)ﬂ (@) + )Py iw) = 0
Since:f;g_:;;;);(_;?_)eaﬁzz-a,) ve also have

*(za)H(—w)+H(-—w) m(zw) —0 ’ e e e

-L'—-T

J— A“‘J._A._k e

Thus if we form the matrixhﬂﬂwﬁTHd:wg+Eh( ] then there exist
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constants o,0fwith 0<o <o, such|that for |u]

hazed. L a8
CCET A

o _&LI

LA

b

om o mmn e e e e i

P i0)Ha(w) + How)Pylio) = 0.

. o

(7.17) ..

Moreover the elements ofiﬁ@@lare even integral rational functions

in the components of w . We demote by ord H2 the highest

occurring ordéf’of these funetiéns. We now define H2 for
arbitraryw by means of ' ;

Hyw) = o Hyoflel), N = max([im+ 1), tordHy) .

(7.18)

([x]1 denotes the largest intege# L;%). Then it follows from

(7.15) that (7.17) holds for ali w, and from (7.16) that

LotV 5 Hylw) € oo .|

(7.19)
|
Furthermoreythe elements of Hzﬂ@}ware%ﬁgﬂynomials in the com-. /125
ponents of w. If we now let !
PR 1 ~
VH{w) = Hylw)+ 0yl
Hw) = How)+ ol | (7.20)
then it follows from (7.19) and, (7.20) and 2N >m that
1
ol 1) S H) § o0+ 11, | (7.21)
L oo H o)+ H@)P,io) = of Pyfiv)+ Putio) | (7.22)

{ S |
jS.const. (lo"+1) = | const.

| il |

Next we understand byEQ@ﬁﬁﬂ the |differential operator of order

A (@) |

S esufonpe it = [ (3o V1) ()it do,
jr=t gy vt C

 (¢(w)| 15+ the -Fourier transform of u), then it follows from
(7.21) that. for@ﬁ@@ﬁan inequality (7.13) holds. Furthermore

(7.14) follows just like (H4.11). From this fact the assertion
follows. ‘ |
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" TTIF we now set |

.

Rofos) = (-2 o) L

then for all we | o oo vo i

R(3[exyu = (2n)~w=J' ]2V gins (o) do |
'- | 3 |

?%f we note that by (7.20) E

(QUEf0) ~ I = (2m)" [ Hifo)eery(e) do J
1 F.

then by (7.16)-and (7.18) we can define a bounded positive

definite symmetric operator

;
H = R-0/0)QGfon) - 1), lor all uel,

'

by . s e
Hu = [ Hyjw) o2V eivsp(o) do
: R

= JH2(w[[wl) giotylm) do
e

Cy - ow
|

for which by (7.17) for all uei‘R1

§
R R
(Pulefomye, Hu) + (u, HP,(3foz)u) = 0. ]

b

* !
Therefore in this casgse one can ?epresent the operator H of

Theorem 3 as the quotient of di?ferential operators.

1
'
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8. . GENERALIZATION TO SYSTEMS OF FIRST ORDER DIFFERENTIAL
EQUATIONS WHOSE COEFFICIENTS DEPEND ON x AND t

|
_-“-‘-‘|I_¢-—‘-—“|—0A;‘—\ldd —— e e

In this section we wish to;prove the following theorem.
THEOREM 7. Given a system| of first order differential
gguations !

S N

81&/83 ZA x,t Eulé’x = Pl(x t a/ax

i v=1

]
H

whoseweoeffiCients(aredinfinitely~1sufficiéntlyﬁidifféréntiable"

in all variables. We assume that for all real w and all x

and t the matrices’P(z.tiw)=3, 4, )iv;| have purely imaginary eigen-
L)

values and have simple structuré. Then for each polint (Xo’

there is a nelghborhood of U ané a formally self-adjoint

differential operator Q! 3ﬁm]of even order 2N>0 whose

coefficients are infinitely (sufflclently) differentiable such that

for all': uxt}60°ﬂlﬂlthe 1nequa11t1es (7.13) = (7.14) hold if one
replaces Q(@fcx) by Q(xtalax\ . L QIMMI(—U)] is the class of all
infinitely differentiable functlons which vanish cutside of a

compact set'eyll |

PROOF. By Lemma 2' and ac%ording to the proof of Theorem 6
there is for each point (x , & ) a neighborhocd U in which there
exists an hermitian matrix v Eﬂxtzwn corresponding to P(x,t,iw)
whose elements are integral rational functions of the wHA
with coefficients which are inflnltely differentiable with
respect to x and t (Cf. the remgrk in connection with definition 2)
so that for all.ﬁﬂZﬁE}I{ the inéqualities corresponding to
(7.21) and (7.22) hold. Hence we can construct a formally
self-adjoint differential operai%or 'Qz,,8/2z)] for which .

.I

‘ Q(Qﬁ,t,?:.w) |= H(a:,t,«_w) :J . | , ( 8 . 1)
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Theri 65 (7.21) for each point (,;)eU|the inequality (7.13)
‘holds. for the differentialhoperépgrrEQm;ﬁgﬁgﬂ when one replaces
1Q(8/ex)) by Qz,t,8/cx)|. According ﬁo Garding [1], (7.13) holds for
appropriate >0, 0,> 0| for--the - differentlal -operator |Q(,t,5/3)|

also, i.e.

( z lie¥ufexN|E + Hu]lz) < (u,Q(x,t,a/axA)kui "

v ]

..“

- o (21'8Nu/aman+|1uuz) (8.2)

r=l

- — HA

if weCpo(U)) and U 1s sufficiently small.

Liz,t,8/ox)

= Py*(= r'B/Bx)Q {x,¢, a/c:r +Q (2,2, Bfo.z l(xtajaa: (8.3)

If we now con31der . o . J

where Pl*(xtaﬁzﬂls the operator formally adjoint to;P(z aﬁxﬂ
‘then it follows- from (8.1) and_ the egquation corresponding %o
(7.22) that ‘ 1

I

 L{z,t,i0) ,'

I

P M b io)Q(E b iw)+ Q. 4, i) Py, tiw)
‘l az(Pl*(:r,t,'iw)+P1(:r,t,iw)) . ‘
L - - e . . I . N - B ..

P —

Hence the differential operator h@gmaﬁxjis at most of order 2N.

If a is a constant vector then we have

|
3

*L x,t,a/ax ae‘“’“’ = (L(x t m) G(:c t, zw))ae““z _‘ (8.1)

I
|

where the elements of G(X,t,iw)‘are polynomials 1n the w,, whose

order is less than or equal to 2N. Hence it follows for all
weCe™(U)) by means of integration by parts that

(u Lizt, B/Bz W) = (Ly(,t, é}éx"ji.f;:;i&,’:’,"a;ééj{;),,I
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“where the Li are differential oéerators of order less than or
~eqgual to N. Hence by (8.2)“dneﬁcan estimate the expression
{mL@n2fee))) by means of (@122 and obtain

(Py(@,t,0/ez)u, Qla,b,2fexym) + (w,Q(2,4,2/0)P(z, ha/&’v}#)J (8.5)

= e feeh) 5 ooms £ O AT |

But this proves the theoremy |
!

In accordance with (4.12) 1t follows from this theorem
that there is an "a priori" estlmate of the local solutions and
thus by means of standard methods (cfr@e,g,ﬁLeray5L§llﬂ§§3§\
there exist global solutions, e.gafor all sufficlently

-differentiable inltial values. -
|

Thus with the help of the iast theorem one can generallze
the results of I. Petrovskii [7]. Indeed Petrovskii requires
that the elgenvalues of13xtomxlumdst be distinct for all |

Xx,t,w. Then these matrices are.certalnly of simple atructure.

|
!
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